
PYTHON
Introduction to the Basics
March 2021 S. Linner, M. Lischewski, M. Richerzhagen Forschungszentrum Jülich

Member of the Helmholtz Association

Table of Contents
Introduction
Data Types I
Control Statements
Functions
Input/Output
Errors and Exceptions
Data Types II
Object Oriented Programming
Modules and Packages
Advanced Techniques
Tools
Regular Expressions (optional)
Summary and Outlook

Member of the Helmholtz Association Slide 1

Table of Contents
Introduction
Data Types I
Control Statements
Functions
Input/Output
Errors and Exceptions
Data Types II
Object Oriented Programming
Modules and Packages
Advanced Techniques
Tools
Regular Expressions (optional)
Summary and Outlook

Member of the Helmholtz Association Slide 2

What is Python?

Python: Dynamic programming language which supports several different programing
paradigms:

Procedural programming
Object oriented programming
Functional programming

Standard: Python byte code is executed in the Python interpreter (similar to Java)
→ platform independent code

Member of the Helmholtz Association Slide 3

Why Python?

Extremly versatile language
Website development, data analysis, server maintenance, numerical analysis, ...

Syntax is clear, easy to read and learn (almost pseudo code)
Common language
Intuitive object oriented programming
Full modularity, hierarchical packages
Comprehensive standard library for many tasks
Big community
Simply extendable via C/C++, wrapping of C/C++ libraries
Focus: Programming speed

Member of the Helmholtz Association Slide 4

History

Start implementation in December 1989 by Guido van Rossum (CWI)
16.10.2000: Python 2.0

Unicode support
Garbage collector
Development process more community oriented

3.12.2008: Python 3.0
Not 100% backwards compatible

2007 & 2010 most popular programming language (TIOBE Index)
Recommendation for scientific programming (Nature News, NPG, 2015)
Current version: Python 3.9.2
Python2 is out of support!1

1https://python3statement.org/

Member of the Helmholtz Association Slide 5

Zen of Python

20 software principles that influence the design of Python:
1 Beautiful is better than ugly.
2 Explicit is better than implicit.
3 Simple is better than complex.
4 Complex is better than complicated.
5 Flat is better than nested.
6 Sparse is better than dense.
7 Readability counts.
8 Special cases aren’t special enough to break the rules.
9 Although practicality beats purity.

10 Errors should never pass silently.
11 Unless explicitly silenced.
12 ...

Member of the Helmholtz Association Slide 6

Is Python fast enough?

For user programs: Python is fast enough!
Most parts of Python are written in C
For compute intensive algorithms: Fortran, C, C++ might be better
Performance-critical parts can be re-implemented in C/C++ if necessary
First analyse, then optimise!

Member of the Helmholtz Association Slide 7

Hello World!

#!/usr/bin/env python3

This is a commentary
print("Hello world!")

hello_world.py

$ python3 hello_world.py
Hello world!
$

$ chmod 755 hello_world.py
$./ hello_world.py
Hello world!
$

Member of the Helmholtz Association Slide 8

Hello User

#!/usr/bin/env python3

name = input("What’s your name? ")
print("Hello", name)

hello_user.py

$./ hello_user.py
What ’s your name? Rebecca
Hello Rebecca
$

Member of the Helmholtz Association Slide 9

Strong and Dynamic Typing

Strong Typing:
Object is of exactly one type! A string is always a string, an integer always an integer
Counterexamples: PHP, JavaScript, C: char can be interpreted as short, void * can
be everything

Dynamic Typing:
No variable declaration
Variable names can be assigned to different data types in the course of a program
An object’s attributes are checked only at run time
Duck typing (an object is defined by its methods and attributes)

When I see a bird that walks like a duck and swims like a duck and quacks like a
duck, I call that bird a duck.2

2James Whitcomb Riley

Member of the Helmholtz Association Slide 10

Example: Strong and Dynamic Typing

#!/usr/bin/env python3
number = 3
print(number , type(number))
print(number + 42)
number = "3"
print(number , type(number))
print(number + 42)

types.py

3 <class ’int’>
45
3 <class ’str’>
Traceback (most recent call last):

File "types.py", line 7, in <module >
print(number + 42)

TypeError: can only concatenate str (not "int") to str

Member of the Helmholtz Association Slide 11

Interactive Mode

The interpreter can be started in interactive mode:
$ python3
Python 3.7.2 (default , Mar 13 2019, 15:15:18)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for
more information.
>>> print("hello world")
hello world
>>> a = 3 + 4
>>> print(a)
7
>>> 3 + 4
7
>>>

Member of the Helmholtz Association Slide 12

IDLE
Integrated DeveLopment Environment
Part of the Python installation

Member of the Helmholtz Association Slide 13

Documentation

Online help in the interpreter:
help(): general Python help
help(obj): help regarding an object, e.g. a function or a module
dir () : all used names
dir(obj): all attributes of an object

Official documentation: http://docs.python.org/

Member of the Helmholtz Association Slide 14

http://docs.python.org/

Documentation

>>> help(dir)
Help on built -in function dir:
...
>>> a = 3
>>> dir()
[’__builtins__ ’, ’__doc__ ’, ’__file__ ’, ’__name__ ’, ’a’]
>>> help(a)
Help on int object:
...

Member of the Helmholtz Association Slide 15

Differences Python 2 – Python 3 (incomplete)

Python 2 Python 3
shebang1 #!/usr/bin/python #!/usr/bin/python3
IDLE cmd1 idle idle3
print cmd (syntax) print print()
input cmd (syntax) raw_input() input()
unicode u"..." all strings
integer type int/long int (infinite)
... hints in each chapter

⇒http://docs.python.org/3/whatsnew/3.0.html

1linux specific

Member of the Helmholtz Association Slide 16

http://docs.python.org/3/whatsnew/3.0.html

Enjoy

Table of Contents
Introduction
Data Types I
Control Statements
Functions
Input/Output
Errors and Exceptions
Data Types II
Object Oriented Programming
Modules and Packages
Advanced Techniques
Tools
Regular Expressions (optional)
Summary and Outlook

Member of the Helmholtz Association Slide 17

Numerical Data Types

int : integer numbers (infinite)
float : corresponds to double in C
complex : complex numbers (j is the imaginary unit)

a = 1

c = 1.0
c = 1e0

d = 1 + 0j

Member of the Helmholtz Association Slide 18

Operators on Numbers

Basic arithmetics: + , - , * , /
hint: Python 2⇒ 1/2 = 0

Python 3⇒ 1/2 = 0.5

Div and modulo operator: // , % , divmod(x, y)

Absolute value: abs(x)

Rounding: round(x)

Conversion: int(x) , float(x) , complex(re [, im=0])

Conjugate of a complex number: x.conjugate()

Power: x ** y , pow(x, y)

Result of a composition of different data types is of the “bigger” data type.

Member of the Helmholtz Association Slide 19

Bitwise Operation on Integers

Operations:
AND: x & y

OR: x | y

exclusive OR (XOR) :
x ˆ y

invert: ~x

shift right n bits: x >> n

shift left n bits: x << n

Use bin(x) to get binary
representation string of x .

>>> print(bin(6),bin (3))
0b110 0b11
>>> 6 & 3
2
>>> 6 | 3
7
>>> 6 ^ 3
5
>>> ~0
-1
>>> 1 << 3
8
>>> pow(2,3)
8
>>> 9 >> 1
4
>>> print(bin(9),bin(9>>1))
0b1001 0b100

Member of the Helmholtz Association Slide 20

Strings
Data type: str

s = ’spam’ , s = "spam"
Multiline strings: s = """spam"""

No interpretation of escape sequences: s = r"sp\nam"

Generate strings from other data types: str(1.0)

>>> s = """ hello
... world """
>>> print(s)
hello
world
>>> print("sp\nam")
sp
am
>>> print(r"sp\nam") # or: print ("sp\\nam")
sp\nam

Member of the Helmholtz Association Slide 21

String Methods

Count appearance of substrings: s.count(sub [, start[, end]])

Begins/ends with a substring? s.startswith(sub[, start[, end]]) ,
s.endswith(sub[, start[, end]])

All capital/lowercase letters: s.upper() , s.lower()

Remove whitespace: s.strip([chars])

Split at substring: s.split([sub [,maxsplit]])

Find position of substring: s.index(sub[, start[, end]])

Replace a substring: s.replace(old, new[, count])

More methods: help(str) , dir(str)

Member of the Helmholtz Association Slide 22

Lists
Data type: list

s = [1, "spam", 9.0, 42] , s = []

Append an element: s.append(x)

Extend with a second list: s.extend(s2)

Count appearance of an element: s.count(x)

Position of an element: s.index(x[, min[, max]])

Insert element at position: s.insert(i, x)

Remove and return element at position: s.pop([i])

Delete element: s.remove(x)

Reverse list: s.reverse()

Sort: s.sort([cmp[, key[, reverse]]])

Sum of the elements: sum(s)

Member of the Helmholtz Association Slide 23

Tuple
Data type: tuple

s = 1, "spam", 9.0, 42

s = (1, "spam", 9.0, 42)

Constant list
Count appearance of an element: s.count(x)
Position of an element: s.index(x[, min[, max]])
Sum of the elements: sum(s)

Multidimensional tuples and lists
List and tuple can be nested (mixed):

>>> A=([1 ,2 ,3] ,(1,2 ,3))
>>> A
([1, 2, 3], (1, 2, 3))
>>> A[0][2]=99
>>> A
([1, 2, 99], (1, 2, 3))

Member of the Helmholtz Association Slide 24

Tuple
Data type: tuple

s = 1, "spam", 9.0, 42

s = (1, "spam", 9.0, 42)

Constant list
Count appearance of an element: s.count(x)
Position of an element: s.index(x[, min[, max]])
Sum of the elements: sum(s)

Multidimensional tuples and lists
List and tuple can be nested (mixed):

>>> A=([1 ,2 ,3] ,(1,2 ,3))
>>> A
([1, 2, 3], (1, 2, 3))
>>> A[0][2]=99
>>> A
([1, 2, 99], (1, 2, 3))

Member of the Helmholtz Association Slide 24

Lists, Strings and Tuples

Lists are mutable
Strings and tuples are immutable

No assignment s[i] = ...
No appending and removing of elements
Functions like x.upper() return a new string!

>>> s1 = "spam"
>>> s2 = s1.upper ()
>>> s1
’spam’
>>> s2
’SPAM’

Member of the Helmholtz Association Slide 25

Operations on Sequences
Strings, lists and tuples have much in common: They are sequences.

Does/doesn’t s contain an element?
x in s , x not in s

Concatenate sequences: s + t

Multiply sequences: n * s , s * n

i-th element: s[i] , i-th to last element: s[-i]

Subsequence (slice): s[i:j] , with step size k: s[i:j:k]

Subsequence (slice) from beginning/to end: s[:-i] , s[i:] , s[:]

Length (number of elements): len(s)

Smallest/largest element: min(s) , max(s)

Assignments: (a, b, c) = s
→ a = s[0] , b = s[1] , c = s[2]

Member of the Helmholtz Association Slide 26

Indexing in Python
positive index 0 1 2 3 4 5 6 7 8 9 10
element P y t h o n K u r s
negative index -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

>>> kurs = "Python Kurs"
>>> kurs [2:2]

>>> kurs [2:3]
t
>>> kurs [2]
t
>>> kurs [-4:-1]
Kur
>>> kurs [-4:]
Kurs
>>> kurs [-6:-8:-1]
no

Member of the Helmholtz Association Slide 27

Boolean Values
Data type bool: True , False
Values that are evaluated to False :

None (data type NoneType)

False
0 (in every numerical data type)
Empty strings, lists and tuples: ” , [] , ()

Empty dictionaries: {}

Empty sets set()

All other objects of built-in data types are evaluated to True !
>>> bool([1, 2, 3])
True
>>> bool("")
False

Member of the Helmholtz Association Slide 28

References

Every object name is a reference to this object!
An assignment to a new name creates an additional reference to this object.
Hint: copy a list with s2 = s1[:] or s2 = list(s1)

Operator is compares two references (identity),
operator == compares the contents of two objects
Assignment: different behavior depending on object type

Strings, numbers (simple data types): create a new object with new value
Lists, dictionaries, ...: the original object will be changed

Member of the Helmholtz Association Slide 29

Reference - Example

>>> x=1
>>> y=x
>>> x is y
True
>>> y=2
>>> x is y
False

x
1

>>> s1 = [1, 2, 3, 4]
>>> s2 = s1
>>> s2[1] = 17
>>> s1
[1, 17, 3, 4]
>>> s2
[1, 17, 3, 4]

Member of the Helmholtz Association Slide 30

Reference - Example

>>> x=1
>>> y=x
>>> x is y
True
>>> y=2
>>> x is y
False

x

y
1

>>> s1 = [1, 2, 3, 4]
>>> s2 = s1
>>> s2[1] = 17
>>> s1
[1, 17, 3, 4]
>>> s2
[1, 17, 3, 4]

Member of the Helmholtz Association Slide 30

Reference - Example

>>> x=1
>>> y=x
>>> x is y
True
>>> y=2
>>> x is y
False

x

y
1

2

>>> s1 = [1, 2, 3, 4]
>>> s2 = s1
>>> s2[1] = 17
>>> s1
[1, 17, 3, 4]
>>> s2
[1, 17, 3, 4]

Member of the Helmholtz Association Slide 30

Reference - Example

>>> x=1
>>> y=x
>>> x is y
True
>>> y=2
>>> x is y
False

x

y
1

2

>>> s1 = [1, 2, 3, 4]
>>> s2 = s1
>>> s2[1] = 17
>>> s1
[1, 17, 3, 4]
>>> s2
[1, 17, 3, 4]

s1
1

2

3

4
s2

Member of the Helmholtz Association Slide 30

Reference - Example

>>> x=1
>>> y=x
>>> x is y
True
>>> y=2
>>> x is y
False

x

y
1

2

>>> s1 = [1, 2, 3, 4]
>>> s2 = s1
>>> s2[1] = 17
>>> s1
[1, 17, 3, 4]
>>> s2
[1, 17, 3, 4]

s1
1

17

3

4
s2

Member of the Helmholtz Association Slide 30

Groups

1 2 3 4
5 6 7 8

Member of the Helmholtz Association Slide 31

Enjoy

Table of Contents
Introduction
Data Types I
Control Statements
Functions
Input/Output
Errors and Exceptions
Data Types II
Object Oriented Programming
Modules and Packages
Advanced Techniques
Tools
Regular Expressions (optional)
Summary and Outlook

Member of the Helmholtz Association Slide 32

The If Statement

if a == 3:
print("Aha!")

Blocks are defined by indentation! ⇒Style Guide for Python
Standard: Indentation with four spaces

if a == 3:
print("spam")

elif a == 10:
print("eggs")

elif a == -3:
print("bacon")

else:
print("something else")

Member of the Helmholtz Association Slide 33

https://www.python.org/dev/peps/pep-0008

Relational Operators

Comparison of content: == , < , > , <= , >= , !=

Comparison of object identity: a is b , a is not b

And/or operator: a and b , a or b

Chained comparison: a <= x < b , a == b == c , . . .
Negation: not a

if not (a==b) and (c<3):
pass

Hint: pass is a No Operation (NOOP) function

Member of the Helmholtz Association Slide 34

For Loops

for i in range (10):
print(i) # 0, 1, 2, 3, ..., 9

for i in range(3, 10):
print(i) # 3, 4, 5, ..., 9

for i in range(0, 10, 2):
print(i) # 0, 2, 4, 6, 8

else:
print("Loop completed.")

End loop prematurely: break

Next iteration: continue

else is executed when loop didn’t end prematurely

Member of the Helmholtz Association Slide 35

For Loops (continued)

Iterating directly over sequences (without using an index):
for item in ["spam", "eggs", "bacon"]:

print(item)

The range function can be used to create a list:

>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]

If indexes are necessary:
for (i, char) in enumerate("hello world"):

print(i, char)

Member of the Helmholtz Association Slide 36

While Loops

i = 0
while i < 10:

i += 1

break and continue work for while loops, too.

Substitute for do-while loop:
while True:

important code
if condition:

break

Member of the Helmholtz Association Slide 37

Enjoy

Table of Contents
Introduction
Data Types I
Control Statements
Functions
Input/Output
Errors and Exceptions
Data Types II
Object Oriented Programming
Modules and Packages
Advanced Techniques
Tools
Regular Expressions (optional)
Summary and Outlook

Member of the Helmholtz Association Slide 38

Functions

def add(a, b):
""" Returns the sum of a and b."""

mysum = a + b
return mysum

>>> result = add(3, 5)
>>> print(result)
8
>>> help(add)
Help on function add in module __main__:

add(a, b)
Returns the sum of a and b.

Member of the Helmholtz Association Slide 39

Return Values and Parameters

Functions accept arbitrary objects as parameters and return values
Types of parameters and return values are unspecified
Functions without explicit return value return None

def hello_world ():
print("Hello World!")

a = hello_world ()
print(a)

my_program.py

$ python3 my_program.py
Hello World!
None

Member of the Helmholtz Association Slide 40

Multiple Return Values

Multiple return values are realised using tuples or lists:
def foo ():

a = 17
b = 42
return (a, b)

ret = foo()
(x, y) = foo()

Member of the Helmholtz Association Slide 41

Optional Parameters – Default Values
Parameters can be defined with default values.
Hint: It is not allowed to define non-default parameters after default parameters

def fline(x, m=1, b=0): # f(x) = m*x + b
return m*x + b

for i in range (5):
print(fline(i),end=" ")

#force newline
print()
for i in range (5):

print(fline(i,-1,1),end=" ")

plot_lines.py

$ python3 plot_lines.py
0 1 2 3 4
1 0 -1 -2 -3

Hint: end in print defines the last character, default is linebreak

Member of the Helmholtz Association Slide 42

Positional Parameters

Parameters can be passed to a function in a different order than specified:

def printContact(name ,age ,location):
print("Person: ", name)
print("Age: ", age , "years")
print("Address: ", location)

printContact(name="Peter Pan", location="Neverland", age =10)

displayPerson.py

$ python3 displayPerson.py
Person: Peter Pan
Age: 10 years
Address: Neverland

Member of the Helmholtz Association Slide 43

Functions are Objects

Functions are objects and as such can be assigned and passed on:
>>> a = float
>>> a(22)
22.0

>>> def foo(fkt):
... print(fkt (33))
...
>>> foo(float)
33.0
>>> foo(str)
33
>>> foo(complex)
(33+0j)

Member of the Helmholtz Association Slide 44

Online Help: Docstrings

Can be used in function, modul, class and method definitions
Is defined by a string as the first statement in the definition
help(...) on python object returns the docstring
Two types of docstrings: one-liners and multi-liners

def complex(real =0.0, imag =0.0):
""" Form a complex number.

Keyword arguments:
real -- the real part (default 0.0)
imag -- the imaginary part (default 0.0)

"""
...

Member of the Helmholtz Association Slide 45

Functions & Modules

Functions thematically belonging together can be stored in a separate Python file.
(Same for objects and classes)
This file is called module and can be loaded in any Python script.
Multiple modules available in the Python Standard Library
(part of the Python installation)
Command for loading a module: import <filename>
(filename without ending .py)

import math
s = math.sin(math.pi)

More information for standard modules and how to create your own module see chapter
Modules and Packages on slide 91

Member of the Helmholtz Association Slide 46

Enjoy

Table of Contents
Introduction
Data Types I
Control Statements
Functions
Input/Output
Errors and Exceptions
Data Types II
Object Oriented Programming
Modules and Packages
Advanced Techniques
Tools
Regular Expressions (optional)
Summary and Outlook

Member of the Helmholtz Association Slide 47

String Formatting
Format string + class method x.format()
“replacement fields”: curly braces around optional arg_name (default: 0,1,2,. . .)

print("The answer is {0:4d}".format (42))
’The answer is 42’
s = "{0}: {1:08.3f}".format("spam", 3.14)
’spam: 0003.140 ’

format purpose
default: string

m.nf floating point: m filed size, n digits after the decimal point (6)
m.ne floating point (exponential): m filed size, 1 digit before and n digits behind the

decimal point (default: 6)
m.n% percentage: similar to format f, value ∗ 100 with finalizing ’%’

md Integer number: m field size (0m⇒leading “0”)
format d can be replaced by b (binary), o (octal) or x (hexadecimal)

Member of the Helmholtz Association Slide 48

Literal String Interpolation (f-strings)

Provides a way to embed expressions inside string literals, using a minimal syntax
Is a literal string, prefixed with ’f’, which contains expressions inside braces
Expressions are evaluated at runtime and replaced with their values.

>>> name = "Martin"
>>> age = 50
>>> f"My name is {name} and my age next year is {age +1}"
’My name is Martin and my age next year is 51’
>>> value = 12.345
>>> f"value={value :5.2f}"
’value =12.35 ’

Hint: Since Python 3.6!

Member of the Helmholtz Association Slide 49

String Formatting (deprecated, Python 2 only)

String formatting similar to C:
print "The answer is %4i." % 42
s = "%s: %08.3f" % ("spam", 3.14)

Integer decimal: d, i
Integer octal: o
Integer hexadecimal: x, X
Float: f, F
Float in exponential form: e, E, g, G
Single character: c
String: s
Use %% to output a single % character.

Member of the Helmholtz Association Slide 50

Command Line Input
User input in Python 3:
user_input = input("Type something: ")

User input in Python 2:
user_input = raw_input("Type something: ")

Hint: In Python 2 is input("...") ⇐⇒ eval(raw_input("..."))

Command line parameters:

import sys
print(sys.argv)

params.py

$ python3 params.py spam
[’params.py’, ’spam ’]

Member of the Helmholtz Association Slide 51

Files

file1 = open("spam.txt", "r")
file2 = open("/tmp/eggs.json", "wb")

Read mode: r

Write mode (new file): w

Write mode, appending to the end: a

Handling binary files: e.g. rb

Read and write (update): r+

for line in file1:
print(line)

Member of the Helmholtz Association Slide 52

Operations on Files

Read: f.read([size])

Read a line: f.readline()

Read multiple lines: f.readlines([sizehint])

Write: f.write(str)

Write multiple lines: f.writelines(sequence)

Close file: f.close()

file1 = open("test.txt", "w")
lines = ["spam\n", "eggs\n", "ham\n"]
file1.writelines(lines)
file1.close ()

Python automatically converts \n into the correct line ending!

Member of the Helmholtz Association Slide 53

The with statement

File handling (open/close) can be done by the context manager with .
(⇒section Errors and Exceptions on slide 65).
with open("test.txt") as f:

for line in f:
print(line)

After finishing the with block the file object is closed, even if an exception occurred
inside the block.

Member of the Helmholtz Association Slide 54

Enjoy

Table of Contents
Introduction
Data Types I
Control Statements
Functions
Input/Output
Errors and Exceptions
Data Types II
Object Oriented Programming
Modules and Packages
Advanced Techniques
Tools
Regular Expressions (optional)
Summary and Outlook

Member of the Helmholtz Association Slide 55

Syntax Errors, Indentation Errors

Parsing errors: Program will not be executed.
Mismatched or missing parenthesis
Missing or misplaced semicolons, colons, commas
Indentation errors

print("I’m running ...")
def add(a, b)

return a + b

add.py

$ python3 add.py
File "add.py", line 2

def add(a, b)
^

SyntaxError: invalid syntax

Member of the Helmholtz Association Slide 56

Exceptions

Exceptions occur at runtime:

import math
print("I’m running ...")
math.foo()
print("I’m still running ...")

error.py

$ python3 error.py
I’m running ...
Traceback (most recent call last):

File "error.py", line 3, in <module >
math.foo()

AttributeError: module ’math ’ has no attribute ’foo ’

Member of the Helmholtz Association Slide 57

Handling Exceptions (1)

try:
s = input("Enter a number: ")
number = float(s)

except ValueError:
print("That’s not a number!")

except block is executed when the code in the try block throws an according
exception
Afterwards, the program continues normally
Unhandled exceptions force the program to exit.

Handling different kinds of exceptions:
except (ValueError , TypeError , NameError):

Built-in exceptions: http://docs.python.org/library/exceptions.html

Member of the Helmholtz Association Slide 58

http://docs.python.org/library/exceptions.html

Handling Exceptions (2)

try:
s = input("Enter a number: ")
number = 1/ float(s)

except ValueError:
print("That’s not a number!")

except ZeroDivisionError:
print("You can’t divide by zero!")

except:
print("Oops , what’s happened?")

Several except statements for different exceptions

Last except can be used without specifying the kind of exception: Catches all
remaining exceptions

Careful: Can mask unintended programming errors!

Member of the Helmholtz Association Slide 59

Handling Exceptions (3)

else is executed if no exception occurred
finally is executed in any case

try:
f = open("spam")

except IOError:
print("Cannot open file")

else:
print(f.read ())
f.close()

finally:
print("End of try.")

Member of the Helmholtz Association Slide 60

Exception Objects

Access to exception objects:
EnvironmentError (IOError , OSError):
Exception object has 3 attributes (int , str , str)
Otherwise: Exception object is a string

try:
f = open("spam")

except IOError as e:
print(e.errno , e.filename , e.strerror)
print(e)

spam_open.py

$ python3 spam_open.py
2 spam No such file or directory
[Errno 2] No such file or directory: ’spam ’

Member of the Helmholtz Association Slide 61

Exceptions in Function Calls

draw()

rectangle()

line() Exception!

Function calls another function.
That function raises an exception.
Is exception handled?
No: Pass exception to calling function.

Member of the Helmholtz Association Slide 62

Raising Exceptions

Passing exceptions on:
try:

f = open("spam")
except IOError:

print("Problem while opening file!")
raise

Raising exceptions:
def gauss_solver(matrix):

Important code
raise ValueError("Singular matrix")

Member of the Helmholtz Association Slide 63

Exceptions vs. Checking Values Beforehand
Exceptions are preferable!
def square(x):

if type(x) == int or type(x) == float:
return x ** 2

else:
return None

What about other numerical data types (complex numbers, own data types)? Better:
Try to compute the power and catch possible exceptions! → Duck-Typing
Caller of a function might forget to check return values for validity. Better: Raise an
exception!

def square(x):
return x ** 2

...
try:

result = square(value)
except TypeError:

print(" ’{0}’: Invalid type".format(value))

Member of the Helmholtz Association Slide 64

Exceptions vs. Checking Values Beforehand

Exceptions are preferable!
def square(x):

if type(x) == int or type(x) == float:
return x ** 2

else:
return None

def square(x):
return x ** 2

...
try:

result = square(value)
except TypeError:

print(" ’{0}’: Invalid type".format(value))

Member of the Helmholtz Association Slide 64

The with Statement

Some objects offer context management 3 , which provides a more convenient way to
write try ... finally blocks:

with open("test.txt") as f:
for line in f:

print(line)

After the with block the file object is guaranteed to be closed properly, no matter what
exceptions occurred within the block.

3Class method __enter__(self) will be executed at the beginning and class method __exit__(...)
at the end of the context

Member of the Helmholtz Association Slide 65

Enjoy

Table of Contents
Introduction
Data Types I
Control Statements
Functions
Input/Output
Errors and Exceptions
Data Types II
Object Oriented Programming
Modules and Packages
Advanced Techniques
Tools
Regular Expressions (optional)
Summary and Outlook

Member of the Helmholtz Association Slide 66

Sets
Set: unordered, no duplicated elements

s = {"a", "b", "c"}
alternative s = set([sequence]) , required for empty sets.

Constant set: s = frozenset([sequence])

e.g. empty set: empty = frozenset()

Subset: s.issubset(t) , s <= t , strict subset: s < t
Superset: s.issuperset(t) , s >= t , strict superset: s > t

Union: s.union(t) , s | t
Intersection: s.intersection(t) , s & t
Difference: s.difference(t) , s - t
Symmetric Difference: s.symmetric_difference(t) , s ˆ t

Copy: s.copy()
As with sequences, the following works:

x in s , len(s) , for x in s , s.add(x) , s.remove(x)

Member of the Helmholtz Association Slide 67

Dictionaries
Other names: Hash, Map, Associative Array
Mapping of key→ value
Keys are unordered

>>> store = { "spam": 1, "eggs": 17}
>>> store["eggs"]
17
>>> store["bacon"] = 42
>>> store
{’eggs’: 17, ’bacon’: 42, ’spam’: 1}

Iterating over dictionaries:
for key in store:

print(key , store[key])

Compare two dictionaries: store == pool
Not allowed: > , >= , < , <=

Member of the Helmholtz Association Slide 68

Operations on Dictionaries
Delete an entry: del(store[key])

Delete all entries: store.clear()
Copy: store.copy()
Does it contain a key? key in store

Get an entry: store.get(key[, default])

Remove and return entry: store.pop(key[, default])

Remove and return arbitrary entry: store.popitem()

Views on Dictionaries
Create a view: items() , keys() and values()

List of all (key, value) tuples: store.items()
List of all keys: store.keys()

List all values: store.values()
Caution: Dynamical since Python 3

Member of the Helmholtz Association Slide 69

Operations on Dictionaries
Delete an entry: del(store[key])

Delete all entries: store.clear()
Copy: store.copy()
Does it contain a key? key in store

Get an entry: store.get(key[, default])

Remove and return entry: store.pop(key[, default])

Remove and return arbitrary entry: store.popitem()

Views on Dictionaries
Create a view: items() , keys() and values()

List of all (key, value) tuples: store.items()
List of all keys: store.keys()

List all values: store.values()
Caution: Dynamical since Python 3

Member of the Helmholtz Association Slide 69

Views Behavior: Python 2.X versus Python 3.X

Python 2 (static)
>>> mdict={"a":2, "d":5}
>>> mdict
{’a’: 2, ’d’: 5}
>>> s=mdict.items ()
>>> for i in s:

print(i)
(’a’, 2)
(’d’, 5)
>>> mdict[’a’]=-1
>>> mdict
{’a’: -1, ’d’: 5}
>>> for i in s:

print(i)
(’a’, 2)
(’d’, 5)

Python 3 (dynamic)
>>> mdict={"a":2, "d":5}
>>> mdict
{’a’: 2, ’d’: 5}
>>> s=mdict.items ()
>>> for i in s:

print(i)
(’a’, 2)
(’d’, 5)
>>> mdict[’a’]=-1
>>> mdict
{’a’: -1, ’d’: 5}
>>> for i in s:

print(i)
(’a’, -1)
(’d’, 5)

Member of the Helmholtz Association Slide 70

Enjoy

Table of Contents
Introduction
Data Types I
Control Statements
Functions
Input/Output
Errors and Exceptions
Data Types II
Object Oriented Programming
Modules and Packages
Advanced Techniques
Tools
Regular Expressions (optional)
Summary and Outlook

Member of the Helmholtz Association Slide 71

Object Oriented Programming (OOP)

So far: procedural programming
Data (values, variables, parameters, . . .)
Functions taking data as parameters and returning results

Alternative: Group data and functions belonging together to form custom data types
→ Extensions of structures in C/Fortran

Member of the Helmholtz Association Slide 72

Using Simple Classes as Structs

class Point:
pass

p = Point ()
p.x = 2.0
p.y = 3.3

my_point.py

Class: Custom date type (here: Point)
Object: Instance of a class (here: p)
Attributes (here x , y) can be added dynamically

Hint: pass is a No Operation (NOOP) function

Member of the Helmholtz Association Slide 73

Classes - Constructor

class Point:
def __init__(self , x, y):

self.x = x
self.y = y

p = Point (2.0, 3.0)
print(p.x, p.y)
p.x = 2.5
p.z = 42

my_point.py

__init__ : Is called automatically after creating an object

Member of the Helmholtz Association Slide 74

Methods on Objects

import math

class Point:
def __init__(self , x, y):

self.x = x
self.y = y

def norm(self):
n = math.sqrt(self.x**2 + self.y**2)
return n

p = Point (2.0, 3.0)
print(p.x, p.y, p.norm ())

my_point.py

Method call: automatically sets the object as first parameter
→ traditionally called self
Careful: Overloading of methods not possible!

Member of the Helmholtz Association Slide 75

Converting Objects to Strings

Default return value of str(...) for objects of custom classes:
>>> p = Point (2.0, 3.0)
>>> print(p) # --> print(str(p))
<__main__.Point instance at 0x402d7a8c >

This behaviour can be overwritten:

class Point:
[...]
def __str__(self):

return "({0}, {1})".format(self.x, self.y)

my_point.py

>>> print(p)
(2.0, 3.0)

Member of the Helmholtz Association Slide 76

Converting Objects to Strings

Default return value of str(...) for objects of custom classes:
>>> p = Point (2.0, 3.0)
>>> print(p) # --> print(str(p))
<__main__.Point instance at 0x402d7a8c >

This behaviour can be overwritten:

class Point:
[...]
def __str__(self):

return "({0}, {1})".format(self.x, self.y)

my_point.py

>>> print(p)
(2.0, 3.0)

Member of the Helmholtz Association Slide 76

Comparing Objects
Default: == checks for object identity of custom objects.
>>> p1 = Point (2.0, 3.0)
>>> p2 = Point (2.0, 3.0)
>>> p1 == p2
False

This behaviour can be overwritten:

class Point:
[...]
def __eq__(self , other):

return (self.x == other.x) and (self.y == other.y)

my_point.py

>>> p1 == p2 # Check for equal values
True
>>> p1 is p2 # Check for identity
False

Member of the Helmholtz Association Slide 77

Comparing Objects
Default: == checks for object identity of custom objects.
>>> p1 = Point (2.0, 3.0)
>>> p2 = Point (2.0, 3.0)
>>> p1 == p2
False

This behaviour can be overwritten:

class Point:
[...]
def __eq__(self , other):

return (self.x == other.x) and (self.y == other.y)

my_point.py

>>> p1 == p2 # Check for equal values
True
>>> p1 is p2 # Check for identity
False

Member of the Helmholtz Association Slide 77

Operator overloading
More relational operators:

< : __lt__(self, other)

<= : __le__(self, other)

!= : __ne__(self, other)

> : __gt__(self, other)

>= : __ge__(self, other)

Numeric operators:
+ : __add__(self, other)

- : __sub__(self, other)

* : __mul__(self, other)

...

Member of the Helmholtz Association Slide 78

Emulating Existing Data Types

Classes can emulate built-in data types:
Numbers: arithmetics, int(myobj) , float(myobj) , . . .

Functions: myobj(...)

Sequences: len(myobj) , myobj[...] , x in myobj , ...

Iteratores: for i in myobj

See documentation: http://docs.python.org/3/reference/datamodel.html

Member of the Helmholtz Association Slide 79

http://docs.python.org/3/reference/datamodel.html

Class Variables

Have the same value for all instances of a class:

class Point:
count = 0 # Count all point objects
def __init__(self , x, y):

Point.count += 1 #self.__class__.count += 1
[...]

my_point.py

>>> p1 = Point(2, 3); p2 = Point(3, 4)
>>> p1.count
2
>>> p2.count
2
>>> Point.count
2

Member of the Helmholtz Association Slide 80

Class Methods and Static Methods

class Spam:
spam = "I don’t like spam."

@classmethod
def cmethod(cls):

print(cls.spam)

@staticmethod
def smethod ():

print("Blah blah.")

spam.py

Spam.cmethod ()
Spam.smethod ()
s = Spam()
s.cmethod ()
s.smethod ()

Member of the Helmholtz Association Slide 81

Inheritance (1)

There are often classes that are very similar to each other.
Inheritance allows for:

Hierarchical class structure (is-a-relationship)
Reusing of similar code

Example: Different types of phones
Phone
Mobile phone (is a phone with additional functionality)
Smart phone (is a mobile phone with additional functionality)

Member of the Helmholtz Association Slide 82

Inheritance (2)

class Phone:
def call(self):

pass

class MobilePhone(Phone):
def send_text(self):

pass

MobilePhone now inherits methods and attributes from Phone.

h = MobilePhone ()
h.call() # inherited from Phone
h.send_text () # own method

Member of the Helmholtz Association Slide 83

Overwriting Methods

Methods of the parent class can be overwritten in the child class:
class MobilePhone(Phone):

def call(self):
self.find_signal ()
Phone.call(self)

Member of the Helmholtz Association Slide 84

Multiple Inheritance

Classes can inherit from multiple parent classes. Example:
SmartPhone is a mobile phone
SmartPhone is a camera

class SmartPhone(MobilePhone , Camera):
pass

h = SmartPhone ()
h.call() # inherited from MobilePhone
h.take_photo () # inherited from Camera

Attributes are searched for in the following order:
SmartPhone , MobilePhone , parent class of MobilePhone (recursively), Camera ,
parent class of Camera (recursively).

Member of the Helmholtz Association Slide 85

Private Attributes / Private Class Variables

There are no private variables or private methods in Python.
Convention: Mark attributes that shouldn’t be accessed from outside with an
underscore: _foo .

To avoid name conflicts during inheritance: Names of the form __foo are replaced
with _classname__foo :

class Spam:
__eggs = 3
_bacon = 1
beans = 5

>>> dir(Spam)
>>> [’_Spam__eggs ’, ’__doc__ ’, ’__module__ ’, ’_bacon ’, ’beans’]

Member of the Helmholtz Association Slide 86

Classic (old Style) Classes

The only class type until Python 2.1
In Python 2 default class

New Style Classes

Unified class model (user-defined and build-in)
Descriptores (getter, setter)
The only class type in Python 3
Available as basic class in Python 2: object

Member of the Helmholtz Association Slide 87

Properties (1)

If certain actions (checks, conversions) are to be executed while accessing attributes, use
getter and setter:
class Spam:

def __init__(self):
self._value = 0

def get_value(self):
return self._value

def set_value(self , value):
if value <= 0:

self._value = 0
else:

self._value = value

value = property(get_value , set_value)

Member of the Helmholtz Association Slide 88

Properties (2)

Properties can be accessed like any other attributes:
>>> s = Spam()
>>> s.value = 6 # set_value (6)
>>> s.value # get_value ()
6
>>> s.value = -6 # set_value (-6)
>>> s.value # get_value ()
0

Getter and setter can be added later without changing the API
Access to _value still possible

Member of the Helmholtz Association Slide 89

Enjoy

Table of Contents
Introduction
Data Types I
Control Statements
Functions
Input/Output
Errors and Exceptions
Data Types II
Object Oriented Programming
Modules and Packages
Advanced Techniques
Tools
Regular Expressions (optional)
Summary and Outlook

Member of the Helmholtz Association Slide 90

Importing Modules

Reminder: Functions, classes and object thematically belonging together are grouped in
modules.

import math
s = math.sin(math.pi)

import math as m
s = m.sin(m.pi)

from math import pi as PI , sin
s = sin(PI)

from math import *
s = sin(pi)

Online help: dir(math) , help(math)

Member of the Helmholtz Association Slide 91

Creating a Module (1)

Every Python script can be imported as a module.

"""My first module: my_module.py"""

def add(a, b):
""" Add a and b."""
return a + b

print(add(2, 3))

my_module.py

>>> import my_module
5
>>> my_module.add(17, 42)
59

Top level instructions are executed during import!

Member of the Helmholtz Association Slide 92

Creating a Module (2)

If instructions should only be executed when running as a script, not importing it:

def add(a, b):
return a + b

def main ():
print(add(2, 3))

if __name__ == "__main__":
main()

my_module.py

Useful e.g. for testing parts of the module.

Member of the Helmholtz Association Slide 93

Creating a Package

Modules can be grouped into hierarchically structured packages.
numeric

__init__.py
linalg

__init__.py
decomp.py
eig.py
solve.py

fft
__init__.py
...

Packages are subdirectories
In each package directory:
__init__.py (may be empty)

import numeric
numeric.foo() # from __init__.py
numeric.linalg.eig.foo()

from numeric.linalg import eig
eig.foo()

Member of the Helmholtz Association Slide 94

Modules Search Path

Modules are searched for in (see sys.path):
The directory of the running script
Directories in the environment variable PYTHONPATH

Installation-dependent directories

>>> import sys
>>> sys.path
[’’, ’/usr/lib/python37.zip’,
’/usr/lib64/python3 .7’,
’/usr/lib64/python3 .7/plat -linux’, ...]

Member of the Helmholtz Association Slide 95

Python’s Standard Library

„Batteries included“: comprehensive standard library for various tasks

Member of the Helmholtz Association Slide 96

Mathematics: math
Constants: e , pi

Round up/down: floor(x) , ceil(x)

Exponential function: exp(x)

Logarithm: log(x[, base]) , log10(x)

Power and square root: pow(x, y) , sqrt(x)

Trigonometric functions: sin(x) , cos(x) , tan(x)

Conversion degree↔ radiant: degrees(x) , radians(x)

>>> import math
>>> math.sin(math.pi)
1.2246063538223773e-16
>>> math.cos(math.radians (30))
0.86602540378443871

Member of the Helmholtz Association Slide 97

Random Numbers: random
Random integers:
randint(a, b) , randrange([start,] stop[, step])

Random floats (uniform distr.): random() , uniform(a, b)
Other distibutions: expovariate(lambd) , gammavariate(alpha, beta) ,

gauss(mu, sigma) , . . .

Random element of a sequence: choice(seq)

Several unique, random elements of a sequence: sample(population, k)

Shuffled sequence: shuffle(seq[, random])

>>> import random
>>> s = [1, 2, 3, 4, 5]
>>> random.shuffle(s)
>>> s
[2, 5, 4, 3, 1]
>>> random.choice("Hello world!")
’e’

Member of the Helmholtz Association Slide 98

Time Access and Conversion: time

Classical time() functionality

Time class type is a 9-tuple of int values (struct_time)
Time starts at epoch (for UNIX: 1.1.1970, 00:00:00)
Popular functions:

Seconds since epoch (as a float): time.time()
Convert time in seconds (float) to struct_time : time.localtime([seconds])
If seconds is None the actual time is returned.
Convert struct_time in seconds (float): time.mktime(t)
Convert struct_time in formatted string: time.strftime(format[, t])

Suspend execution of current thread for secs seconds: time.sleep(secs)

Member of the Helmholtz Association Slide 99

Date and Time: datetime

Date and time objects:
d1 = datetime.date (2008 , 3, 21)
d2 = datetime.date (2008 , 6, 22)
dt = datetime.datetime (2011 , 8, 26, 12, 30)
t = datetime.time(12, 30)

Calculating with date and time:
print(d1 < d2)
delta = d2 - d1
print(delta.days)
print(d2 + datetime.timedelta(days =44))

Member of the Helmholtz Association Slide 100

Operations on Path Names: os.path
Paths: abspath(path) , basename(path) , normpath(path) , realpath(path)

Construct paths: join(path1[, path2[, ...]])

Split paths: split(path) , splitext(path)

File information: isfile(path) , isdir(path) , islink(path) , getsize(path) ,
. . .
Expand home directory: expanduser(path)

Expand environment variables: expandvars(path)

>>> os.path.join("spam", "eggs", "ham.txt")
’spam/eggs/ham.txt’
>>> os.path.splitext("spam/eggs.py")
(’spam/eggs’, ’.py’)
>>> os.path.expanduser("~/spam")
’/home/rbreu/spam’
>>> os.path.expandvars("/mydir/$TEST")
’/mydir/test.py’

Member of the Helmholtz Association Slide 101

Files and Directories: os

Working directory: getcwd() , chdir(path)

Changing file permissions: chmod(path, mode)

Changing owner: chown(path, uid, gid)

Creating directories: mkdir(path[, mode]) , makedirs(path[, mode])

Removing files: remove(path) , removedirs(path)

Renaming files: rename(src, dst) , renames(old, new)

List of files in a directory: listdir(path)

for myfile in os.listdir("mydir"):
os.chmod(os.path.join("mydir", myfile),

os.path.stat.S_IRGRP)

Member of the Helmholtz Association Slide 102

Files and Directories: shutil

Higher level operations on files and directories. Mighty wrapper functions for os module.

Copying files: copyfile(src, dst) , copy(src, dst)

Recursive copy: copytree(src, dst[, symlinks])

Recursive removal:
rmtree(path[, ignore_errors[, onerror]])

Recursive move: move(src, dst)

shutil.copytree("spam/eggs", "../ beans",
symlinks=True)

Member of the Helmholtz Association Slide 103

Directory Listing: glob

List of files in a directory with Unix-like extension of wildcards: glob(path)

>>> glob.glob("python /[a-c]*.py")
[’python/confitest.py’,
’python/basics.py’,
’python/curses_test2.py’,
’python/curses_keys.py’,
’python/cmp.py’,
’python/button_test.py’,
’python/argument.py’,
’python/curses_test.py’]

Member of the Helmholtz Association Slide 104

Run Processes: subprocess

Simple execution of a program:
p = subprocess.Popen(["ls", "-l", "mydir"])
returncode = p.wait() # wait for p to end

Access to the program’s output:
p = Popen (["ls"], stdout=PIPE , stderr=STDOUT)
p.wait()
output = p.stdout.read()

Pipes between processes (ls -l | grep txt)

p1 = Popen(["ls", "-l"], stdout=PIPE)
p2 = Popen(["grep", "txt"], stdin=p1.stdout)

Member of the Helmholtz Association Slide 105

Access to Command Line Parameters: argparse (1)

Python program with standard command line option handling:
$./ argumentParser.py -h
usage: argumentParse.py [-h] -f FILENAME [-v]

Example how to use argparse

optional arguments:
-h, --help show this help message and exit
-f FILENAME , --file FILENAME output file
-v, --verbosity increase output verbosity

$ python3 argumentParse.py -f newfile.txt -v
newfile.txt
True

Member of the Helmholtz Association Slide 106

Access to Command Line Parameters: argparse (2)
Simple list of parameters: → sys.argv
More convenient for handling several options: argparse
Deprecated module optparse (since Python 2.7/3.2)

parser = argparse.ArgumentParser(
description=’Example how to use argparse ’)

parser.add_argument("-f", "--file",
dest="filename",
default="out.txt",
help="output file")

parser.add_argument("-v","--verbosity",
action="store_true",
help="increase output verbosity")

args = parser.parse_args ()
print(args.filename)
print(args.verbosity)

argumentParse.py

Member of the Helmholtz Association Slide 107

CSV Files: csv (1)

CSV: Comma Seperated Values
Data tables in ASCII format
Import/Export by MS Excel R©

Columns are delimited by a predefined character (most often comma)

f = open("test.csv", "r")
reader = csv.reader(f)
for row in reader:

for item in row:
print(item)

f.close()

f = open(outfile , "w")
writer = csv.writer(f)
writer.writerow ([1, 2, 3, 4])

Member of the Helmholtz Association Slide 108

CSV Files: csv (2)

Handling different kinds of formats (dialects):
csv.reader(csvfile , dialect=’excel ’) # Default
csv.writer(csvfile , dialect=’excel_tab ’)

Specifying individual format parameters:
csv.reader(csvfile , delimiter=";")

Further format parameters: lineterminator , quotechar , skipinitialspace , . . .

Member of the Helmholtz Association Slide 109

Lightweight Database: sqlite3 (1)

Database in a file or in memory; in Python’s stdlib since 2.5.
conn = sqlite3.connect("bla.db")
c = conn.cursor ()

c.execute(""" CREATE TABLE Friends
(firstname TEXT , lastname TEXT)""")

c.execute(""" INSERT INTO Friends
VALUES ("Jane", "Doe")""")

conn.commit ()

c.execute(""" SELECT * FROM Friends """)
for row in c:

print(row)

c.close ();
conn.close ()

Member of the Helmholtz Association Slide 110

Lightweight Database: sqlite3 (2)

String formatting is insecure since it allows injection of arbitrary SQL code!
Never do this!
symbol = "Jane"
c.execute("... WHERE firstname =’{0}’".format(symbol))

Member of the Helmholtz Association Slide 111

Lightweight Database: sqlite3 (3)

Instead: Use the placeholder the database API provides:
c.execute("... WHERE name = ?", symbol)

friends = (("Janis", "Joplin"), ("Bob", "Dylan"))
for item in friends:

c.execute(""" INSERT INTO Friends
VALUES (?,?)""", item)

⇒ Python module cx_Oracle to access Oracle database
Web page: http://cx-oracle.sourceforge.net/

Member of the Helmholtz Association Slide 112

http://cx-oracle.sourceforge.net/

XML based Client-Server Communication: xmlrpc (1)

XML-RPC: Remote Procedure Call uses XML via HTTP
Independent of platform and programming language
For the client use xmlrpc.client

import xmlrpc.client

s = xmlrpc.client.Server("http :// localhost :8000")
print list of available methods
print(s.system.listMethods ())
use methods
print(s.add (2 ,3))
print(s.sub (5 ,2))

Automatic type conversion for the standard data types: boolean, integer, floats, strings,
tuple, list, dictionarys (strings as keys), . . .

Member of the Helmholtz Association Slide 113

XML based Client-Server Communication: xmlrpc (2)

For the server use xmlrpc.server

from xmlrpc.server import SimpleXMLRPCServer

methods which are to be offered by the server:
class MyFuncs:

def add(self , x, y):
return x + y

def sub(self , x, y):
return x - y

create and start the server:
server = SimpleXMLRPCServer (("localhost", 8000))
server.register_instance(MyFuncs ())
server.serve_forever ()

Member of the Helmholtz Association Slide 114

More Modules

readline : Functionality for command line history and auto-completion
tempfile : Generate temporary files and directories

numpy : Numeric Python package
N-dimensional arrays
Supports linear algebra, Fourier transform and random number capabilities
Part of the SciPy stack

mathplotlib : 2D plotting library, part of the SciPy stack
...

Member of the Helmholtz Association Slide 115

Enjoy

Table of Contents
Introduction
Data Types I
Control Statements
Functions
Input/Output
Errors and Exceptions
Data Types II
Object Oriented Programming
Modules and Packages
Advanced Techniques
Tools
Regular Expressions (optional)
Summary and Outlook

Member of the Helmholtz Association Slide 116

Conditional Expressions

A conditional assignment as
if value <0:

s = "negative"
else:

s = "positive"

can be realized in abbreviated form
s = "negative" if value <0 else "positive"

Member of the Helmholtz Association Slide 117

List Comprehension

Allows sequences to be build by sequences. Instead of using for :
a = []
for i in range (10):

a.append(i**2)

List comprehension can be used:
a = [i**2 for i in range (10)]

Conditional values in list comprehension:
a = [i**2 for i in range (10) if i != 4]

Since Python 2.7: set and dictionary comprehension
s = {i*2 for i in range (3)}
d = {i: i*2 for i in range (3)}

Member of the Helmholtz Association Slide 118

Dynamic Attributes

Remember: Attributes can be added to python objects at runtime:
class Empty:

pass

a = Empty ()
a.spam = 42
a.eggs = 17

Also the attributes can be deleted at runtime:
del(a.spam)

Member of the Helmholtz Association Slide 119

getattr , setattr , hasattr

Attributes of an object can be accessed by name (string):
import math
f = getattr(math , "sin")
print(f(x)) # sin(x)

a = Empty ()
setattr(a, "spam", 42)
print(a.spam)

Useful if depending on user or data input.

Check if attribute is defined:
if not hasattr(a,"spam"):

setattr(a, "spam", 42)
print(a.spam)

Member of the Helmholtz Association Slide 120

Anonymous Function Lambda

Also known as lambda expression and lambda form
>>> f = lambda x, y: x + y
>>> f(2, 3)
5
>>> (lambda x: x**2)(3)
9

Useful if only a simple function is required as an parameter in a function call:
>>> friends = ["alice", "Bob"]
>>> friends.sort()
>>> friends
[’Bob’, ’alice ’]
>>> friends.sort(key = lambda a: a.upper ())
>>> friends
[’alice’, ’Bob’]

Member of the Helmholtz Association Slide 121

Functions Parameters from Lists and Dictionaries

def spam(a, b, c, d):
print(a, b, c, d)

Positional parameters can be created by lists:
>>> args = [3, 6, 2, 3]
>>> spam(*args)
3 6 2 3

Keyword parameters can be created by dictionaries:
>>> kwargs = {"c": 5, "a": 2, "b": 4, "d":1}
>>> spam (** kwargs)
2 4 5 1

Member of the Helmholtz Association Slide 122

Variable Number of Parameters in Functions

def spam(*args , ** kwargs):
for i in args:

print(i)
for i in kwargs:

print(i, kwargs[i])

>>> spam(1, 2, c=3, d=4)
1
2
c 3
d 4

Member of the Helmholtz Association Slide 123

Global and Static Variables in Functions
global links the given name to a global variabile
Static variable can be defined as an attribute of the function

def myfunc ():
global max_size
if not hasattr(myfunc , "_counter"):

myfunc._counter = 0 # it doesn ’t exist yet ,
so initialize it

myfunc._counter += 1
print("{0:d}. call".format(myfunc._counter))
print("max size is {0:d}".format(max_size))

...

>>> max_size = 222
>>> myfunc ()
1. call
max size is 222

Member of the Helmholtz Association Slide 124

Map

Apply specific function on each list element:
>>> li = [1, 4, 81, 9]
>>> mapli = map(math.sqrt , li)
>>> mapli
<map object at 0x7f5748240b90 >
>>> list(mapli)
[1.0, 2.0, 9.0, 3.0]
>>> list(map(lambda x: x * 2, li))
[2, 8, 162, 18]

Functions with more than one parameter requires an additional list per parameter:
>>> list(map(math.pow , li , [1, 2, 3, 4]))
[1.0, 16.0, 531441.0 , 6561.0]

Member of the Helmholtz Association Slide 125

Filter

Similar to map , but the result is a filter object, which contains only list elements,
where the function returns True .

li = [1, 2, 3, 4, 5, 6, 7, 8, 9]
liOdd = filter(lambda x: x % 2, li)
print("li =", li)
print("liOdd =", liOdd)
print("list(liOdd) =", list(liOdd))

filter_example.py

$ python3 filter_example.py
li = [1, 2, 3, 4, 5, 6, 7, 8, 9]
liOdd = <filter object at 0x7fe4ccdcb7c0 >
list(liOdd) = [1, 3, 5, 7, 9]
$

Member of the Helmholtz Association Slide 126

Zip

Join multiple sequences to one list of tuples:
Useful when iterating on multiple sequences in parallel

>>> list(zip("ABC", "123"))
[(’A’, ’1’), (’B’, ’2’), (’C’, ’3’)]
>>> list(zip([1, 2, 3], "ABC", "XYZ"))
[(1, ’A’, ’X’), (2, ’B’, ’Y’), (3, ’C’, ’Z’)]

Example: How to create a dictionary by two sequences

>>> dict(zip(("apple", "peach"), (2 ,0)))
{’apple’: 2, ’peach’: 0}

Member of the Helmholtz Association Slide 127

Iterators (1)

What happens, if for is applied on an object?
for i in obj:

pass

The __iter__ method for obj is called, return an iterator.

On each loop cycle the iterator.__next__() method will be called.

The exception StopIteration is raised when there are no more elements.
Advantage: Memory efficient (access time)

Member of the Helmholtz Association Slide 128

Iterators (2)
class Reverse:

def __init__(self , data):
self.data = data
self.index = len(data)

def __iter__(self):
return self

def __next__(self):
if self.index == 0:

self.index = len(self.data)
raise StopIteration

self.index = self.index - 1
return self.data[self.index]

>>> for char in Reverse("spam"):
... print(char , end=" ")
...
m a p s

Member of the Helmholtz Association Slide 129

Generators

Simple way to create iterators:
Methods uses the yield statement
⇒ breaks at this point, returns element and continues there on the next
iterator.__next__() call.

def reverse(data):
for element in data [:: -1]:

yield element

>>> for char in reverse("spam"):
... print(char , end=" ")
...
m a p s

Member of the Helmholtz Association Slide 130

Generator Expressions

Similar to the list comprehension an iterator can be created using a generator expression:
>>> data = "spam"
>>> for c in (elem for elem in data [:: -1]):
... print(c, end=" ")
...
m a p s

Member of the Helmholtz Association Slide 131

Enjoy

Table of Contents
Introduction
Data Types I
Control Statements
Functions
Input/Output
Errors and Exceptions
Data Types II
Object Oriented Programming
Modules and Packages
Advanced Techniques
Tools
Regular Expressions (optional)
Summary and Outlook

Member of the Helmholtz Association Slide 132

IPython (I)

Enhanced interactive Python shell
Numbered input/output prompts
Object introspection

System shell access

Member of the Helmholtz Association Slide 133

IPython (II)

Tab-completion
Command history retrieval across session
User-extensible ‘magic’ commands

%timeit ⇒Time execution of a Python statement or expression using the timeit module
%cd ⇒Change the current working directory
%edit ⇒Bring up an editor and execute the resulting code
%run ⇒Run the named file inside IPython as a program
⇒more ’magic’ commands

⇒IPython documentation

Member of the Helmholtz Association Slide 134

https://ipython.org/ipython-doc/3/interactive/magics.html
http://ipython.readthedocs.org/en/stable/index.html

PIP Installs Python/Packages (I)

Command pip

A tool for installing Python packages
Python 2.7.9 and later (on the python2 series), and Python 3.4 and later include pip
by default
Installing Packages

$ pip3 install SomePackage
$ pip3 install --user SomePackage #user install

Uninstall Packages

$ pip3 uninstall SomePackage

Member of the Helmholtz Association Slide 135

PIP Installs Python/Packages (II)

Listing Packages

$ pip3 list
docutils (0.9.1)
Jinja2 (2.10)
Pygments (2.3.1)
Sphinx (1.1.2)
$ pip3 list --outdated
docutils (Current: 0.9.1 Latest: 0.14)
Sphinx (Current: 1.1.2 Latest: 2.10)

Searching for Packages

$ pip3 search "query"

⇒pip documentation

Member of the Helmholtz Association Slide 136

https://pip.pypa.io/en/stable/

pyenv - Simple Python Version Management (I)

Easily switch between multiple versions of Python
Doesn’t depend on Python itself
Inserts directory of shims4 at the front of your PATH

Easy Installation:

$ git clone https :// github.com/yyuu/pyenv.git ~/. pyenv
$ echo ’export PYENV_ROOT=" $ HOME/. pyenv"’ >> ~/. bashrc
$ echo ’export PATH=" $ PYENV_ROOT/bin: $ PATH"’ >> ~/. bashrc
$ echo ’eval " $ (pyenv init -)"’ >> ~/. bashrc

⇒pyenv repository

4kind of infrastructure to redirect system/function calls
metaphor: A shim is a piece of wood or metal to make two things fit together

Member of the Helmholtz Association Slide 137

https://github.com/yyuu/pyenv

pyenv - Simple Python Version Management (II)

Install Python versions into $PYENV_ROOT/versions

$ pyenv install --list # available Python versions
$ pyenv install 3.7.4 # install Python 3.7.4

Change the Python version

$ pyenv global 3.7.4 # global Python
$ pyenv local 3.7.4 # per -project Python
$ pyenv shell 3.7.4 # shell -specific Python

List all installed Python versions (asterisk shows the active)

$ pyenv versions
system
2.7.16

* 3.7.4 (set by PYENV_VERSION environment variable)

Member of the Helmholtz Association Slide 138

Virtual Environments

Allow Python packages to be installed in an isolated location
Use cases

Two applications need different versions of a library
Install an application and leave it be
Can’t install packages into the global site-packages directory

Virtual environments have their own installation directories
Virtual environments don’t share libraries with other virtual environments
Available implementations:

virtualenv (Python 2 and Python 3)
venv (Python 3.3 and later)

Member of the Helmholtz Association Slide 139

venv

Create virtual environment

$ python3 -m venv /path/to/env

Activate
$ source /path/to/env/bin/activate

Deactivate
$ deactivate

⇒venv documentation

Member of the Helmholtz Association Slide 140

https://docs.python.org/3/library/venv.html

Pylint (I)

pylint is the lint implementation for python code
Checks for errors in Python code
Tries to enforce a coding standard
Looks for bad code smells
Displays classified messages under various categories such as errors and warnings
Displays statistics about the number of warnings and errors found in different files

Member of the Helmholtz Association Slide 141

Pylint (II)

The code is given an overall mark

$ python3 -m pylint example.py

...

Global evaluation

Your code has been rated at 10.00/10

(previous run: 9.47/10 , +0.53)

⇒Pylint documentation

Member of the Helmholtz Association Slide 142

http://docs.pylint.org/

Software testing

Part of quality management
Point out the defects and errors that were made during the development phases
It always ensures the users or customers satisfaction and reliability of the application
The cost of fixing the bug is larger if testing is not done⇒testing saves time
Python testing tools

pytest
unittest
. . .

Member of the Helmholtz Association Slide 143

http://pytest.org
https://docs.python.org/2/library/unittest.html

pytest

Easy to get started
test_ prefixed test functions or methods are test items
Asserting with the assert statement
pytest will run all files in the current directory and its subdirectories of the form
test_*.py or *_test.py

Usage:

$ python3 -m pytest
...
$ python3 -m pytest example.py
...

⇒pytest documentation

Member of the Helmholtz Association Slide 144

http://pytest.org

pytest Example: Check Function Return Value

def incr(x):
return x + 11

def test_incr ():
assert incr (3) == 4

example1_test.py

$ python3 -m pytest -v example1_test.py
...
____________________ test_incr _____________________

def test_incr ():
> assert incr (3) == 4
E assert 14 == 4
E + where 14 = incr (3)

example1_test.py:5: AssertionError
============= 1 failed in 0.00 seconds =============

Member of the Helmholtz Association Slide 145

pytest Example: Check for expected Exception

import pytest

def f():
raise SystemExit (1)

def test_error ():
with pytest.raises(SystemExit): #passes

f()

pytest Example: Comparing Two Data Object
def test_list_comparison ():

list1 = [1,3,0,8]
list2 = [1,3,3,8]
assert list1 == list2 #fails

Member of the Helmholtz Association Slide 146

pytest Example: Check for expected Exception

import pytest

def f():
raise SystemExit (1)

def test_error ():
with pytest.raises(SystemExit): #passes

f()

pytest Example: Comparing Two Data Object
def test_list_comparison ():

list1 = [1,3,0,8]
list2 = [1,3,3,8]
assert list1 == list2 #fails

Member of the Helmholtz Association Slide 146

pytest Example: Parameterize Test Function

def incr(x):
return x + 1

@pytest.mark.parametrize("test_input ,expected", [
(1, 2),
(2, 3),
(3, 4),

])
def test_incr(test_input , expected):

assert incr(test_input) == expected

Member of the Helmholtz Association Slide 147

Enjoy

Table of Contents
Introduction
Data Types I
Control Statements
Functions
Input/Output
Errors and Exceptions
Data Types II
Object Oriented Programming
Modules and Packages
Advanced Techniques
Tools
Regular Expressions (optional)
Summary and Outlook

Member of the Helmholtz Association Slide 148

Regular Expressions – Introduction

Regular expression (RegExp):
Formal language for pattern matching in strings
Motivation: Analyze various text files:

Log files
Data files (e.g. experimental data, system configuration, . . .)
Command output
. . .

Python module: import re

>>> re.findall(r"a.c", "abc aac aa abb a c")
[’abc’, ’aac’, ’a c’]

Remember:
r"..." ⇒ raw string (escape sequences are not interpreted)

Member of the Helmholtz Association Slide 149

Regular Expressions – Character Classes
Class/set of possible characters: [!?:.,;a-z]
ˆ at the beginning negates the class.
e.g.: [ˆaeiou] ⇒ all characters besides the vocals
Character class in pattern tests for one character
The . represents any (one) character
Predefined character classes:
name charac te r Acr . negated
whitespace [\ t \ n \ r \ f] \ s \S
word charac te r [a−zA−Z_0−9] \w \W
d i g i t [0−9] \ d \D

>>> re.findall(r"\s\d\s", "1 22 4 22 1 a b c")
[’ 4 ’, ’ 1 ’]
>>> re.findall(r"[^aeiou]", "Python Kurs")
[’P’, ’y’, ’t’, ’h’, ’n’, ’ ’, ’K’, ’r’, ’s’]

Member of the Helmholtz Association Slide 150

Regular Expressions – Quantifiers

Quantifier can be defined in ranges (min, max):
\d{5,7} matches sequences of 5-7 digits
Acronym:

{ 1 } one−t ime occurrence Defau l t
{ 0 , } none to m u l t i p l e occurrences ∗
{ 0 ,1 } none or one−t ime occurrence ?
{ 1 , } a t l e a s t one−t ime occurrence +

>>> re.findall(r"[ab]{1,2}", "a aa ab ba bb b")
[’a’, ’aa’, ’ab’, ’ba’, ’bb’, ’b’]
>>> re.findall(r"\d+", "1. Python Kurs 2012")
[’1’, ’2012’]

Member of the Helmholtz Association Slide 151

Regular Expressions – Anchors
Anchors define special restrictions to the pattern matching:

\ b word boundary , swi tch between \w and \W
\B negate \ b
^ s t a r t o f the s t r i n g
$ end of the s t r i n g

>>> re.findall(r"^\d+", "1. Python Course 2015")
[’1’]

Look-around anchors (context):
Lookahead

ab(?=c) matches " ab " i f i t ’ s pa r t o f " abc "
ab (? ! c) matches " ab " i f not fo l l owed by a " c "

Lookbehind

(?<=c) ab matches " ab " i f i t ’ s pa r t o f " cab "
(? <! c) ab matches " ab " i f not behind a " c "

Member of the Helmholtz Association Slide 152

Regular Expression – Rules for Pattern Matching

Pattern analysis will start at the beginning of the string.
If pattern matches, analysis will continue as long as the pattern is still matching
(greedy).
Pattern matching behavior can be changed to non-greedy by using the "?" behind the
quantifier.
⇒ the pattern analysis stops at the first (minimal) matching

>>> re.findall(r"Py.*on", "Python ... Python")
[’Python ... Python ’]
>>> re.findall(r"Py.*?on", "Python ... Python")
[’Python ’, ’Python ’]

Member of the Helmholtz Association Slide 153

Regular Expressions – Groups

() brackets in a pattern create a group
Group name is numbered serially (starting with 1)
The first 99 groups (\1 - \99) can be referenced in the same pattern

Patterns can be combined with logical or (|) inside a group

>>> re.findall(r"(\w+) \1", "Py Py abc Test Test")
[’Py’, ’Test’]
>>>
>>> re.findall(r"([A-Za -z]+|\d+)","uid =2765(zdv124)")
[’uid’, ’2765’, ’zdv’, ’124’]
>>>
>>> re.findall(r"(\[.*?\]| <.*? >)", "[hi]ssd <hal >")
[’[hi]’, ’’, ’<hal >’]

Member of the Helmholtz Association Slide 154

Regular Expressions – Group Usage

Some re.* methods return a re.MatchObject
⇒ contain captured groups

text="adm06:x:706:1000: St.Graf:/home/adm06:/bin/bash"
grp=re.match(

r"^([a-z0 -9]+):x:[0 -9]+:[0 -9]+:(.+):.+:.+$",text)
if (grp):

print("found:", grp.groups ())
print(" user ID=",grp.group (1))
print(" name=",grp.group (2))

re_groups.py

$ python3 re_groups.py
found: (’adm06 ’, ’St.Graf ’)
user ID= adm06
name= St.Graf

Member of the Helmholtz Association Slide 155

Regular Expressions – Matching Flags

Special flags can change behavior of the pattern matching
re.I : Case insensitive pattern matching
re.M : ˆ or. $ will match at beginning/end of each line

(not only at the beginning/end of string)
re.S : . also matches newline (\n)

>>> re.findall("^abc", "Abc\nabc")
[]
>>> re.findall("^abc", "Abc\nabc",re.I)
[’Abc’]
>>> re.findall("^abc", "Abc\nabc",re.I|re.M)
[’Abc’, ’abc’]
>>> re.findall("^Abc.", "Abc\nabc")
[]
>>> re.findall("^Abc.", "Abc\nabc",re.S)
[’Abc\n’]

Member of the Helmholtz Association Slide 156

Regular Expressions – Methods (I)

findall: Simple pattern matching
⇒ list of strings (hits)
>>> re.findall(r"\[.*?\]", "a[bc]g[hal]def")
[’[bc]’, ’[hal]’]

sub: Query replace⇒ new (replaced) string
>>> re.sub(r"\[.*?\]", "!", "a[bc]g[hal]def")
’a!g!def’

search: Find first match of the pattern
⇒ returns re.MatchObject or None

if re.search(r"\[.*?\]", "a[bc]g[hal]def"):
print("pattern matched!")

Member of the Helmholtz Association Slide 157

Regular Expressions – Methods (II)

match: Starts pattern matching at beginning of the string
⇒ returns re.MatchObject or None

text="adm06:x:706:1000: St.Graf:/home/adm06:/bin/bash"
grp=re.match(

"([a-z0 -9]+):x:[0 -9]+:[0 -9]+:(.+):.+:.+$",text)

compile: Regular expressions can be pre-compiled
⇒ gain performance on reusing these RegExp multiple times
(e.g. in loops)
>>> pattern = re.compile(r"\[.*?\]")
>>> pattern.findall("a[bc]g[hal]def")
[’[bc]’, ’[hal]’]

Member of the Helmholtz Association Slide 158

Enjoy

Table of Contents
Introduction
Data Types I
Control Statements
Functions
Input/Output
Errors and Exceptions
Data Types II
Object Oriented Programming
Modules and Packages
Advanced Techniques
Tools
Regular Expressions (optional)
Summary and Outlook

Member of the Helmholtz Association Slide 159

Summary

We have learned:
Multiple data types (e.g. „high level“)
Common statements
Declaration and usage of functions
Modules and packages
Errors and Exceptions, exception handling
Object oriented programming
Some of the often used standard modules
Popular tools for Python developers

Member of the Helmholtz Association Slide 160

Not covered yet

Closures, decorators (function wrappers)
Meta classes
More standard modules: mail, WWW, XML, . . .
→ https://docs.python.org/3/library
Profiling, debugging, unit-testing
Extending and embedding: Python & C/C++→ https://docs.python.org/3/extending
Third Party-Modules: Graphic, web programming, data bases,
. . .→ http://pypi.python.org/pypi

Member of the Helmholtz Association Slide 161

https://docs.python.org/3/library
https://docs.python.org/3/extending
http://pypi.python.org/pypi

Web Programming

CGI scripts: Module cgi (standard lib)
Web frameworks: Django, Flask, Pylons, . . .
Template systems: Cheetah, Genshi, Jinja, . . .
Content Management Systems (CMS): Zope, Plone, Skeletonz, . . .
Wikis: MoinMoin, . . .

Member of the Helmholtz Association Slide 162

NumPy + SciPy + Matplotlib = Pylab

Alternative to MatLab:
Matrix algebra, numeric functions, plotting, ...

Member of the Helmholtz Association Slide 163

And more ...

jupyter Notebook (interactive computational environment)
Python IDEs

PyCharm
Eclipse (PyDev)
. . .

Python and other languages:
Jython: Python code in Java VM
Ctypes: Access C-libraries in Python (since 2.5 in standard lib)
SWIG: Access C- and C++ -libraries in Python

PIL: Python Imaging Library for image manipulation
SQLAlchemy: ORM-Framework

Abstraction: Object oriented access to database

Member of the Helmholtz Association Slide 164

Interactive High-Performance Computing with Jupyter

PRACE-Trainingskurs, online (20.04„ - 22.04.202)

Introduction to Jupyter
Parallel computing using Jupyter
Coupling and control of simulations
Interactive and in-situ visualization
Simulation dashboards
https://www.fz-juelich.de/SharedDocs/Termine/IAS/JSC/DE/Kurse/2021/
ptc-interactive-hpc-2021.html?nn=717802

Member of the Helmholtz Association Slide 165

https://www.fz-juelich.de/SharedDocs/Termine/IAS/JSC/DE/Kurse/2021/ptc-interactive-hpc-2021.html?nn=717802
https://www.fz-juelich.de/SharedDocs/Termine/IAS/JSC/DE/Kurse/2021/ptc-interactive-hpc-2021.html?nn=717802

Data Analysis and Plotting in Python with Pandas

Trainingskurs, online (27.05.2021)

Introduction to Pandas
Simple examples
Hands-on exercises
https://www.fz-juelich.de/SharedDocs/Termine/IAS/JSC/DE/Kurse/2021/
pandas-2021.html?nn=717802

Member of the Helmholtz Association Slide 166

https://www.fz-juelich.de/SharedDocs/Termine/IAS/JSC/DE/Kurse/2021/pandas-2021.html?nn=717802
https://www.fz-juelich.de/SharedDocs/Termine/IAS/JSC/DE/Kurse/2021/pandas-2021.html?nn=717802

High-performance computing with Python

PRACE-Trainingskurs, online (07.06. - 11.06.2021)
Introduces Matlab programmers to the usage of Python

1 Interactive parallel programming with IPython
2 Profiling and optimization
3 High-performance NumPy
4 Just-in-time compilation with numba
5 Distributed-memory parallel programming with Python and MPI
6 Bindings to other programming languages and HPC libraries
7 Interfaces to GPUs
8 https://www.fz-juelich.de/SharedDocs/Termine/IAS/JSC/DE/Kurse/2021/

ptc-hpc-python-2021.html?nn=717802

Member of the Helmholtz Association Slide 167

https://www.fz-juelich.de/SharedDocs/Termine/IAS/JSC/DE/Kurse/2021/ptc-hpc-python-2021.html?nn=717802
https://www.fz-juelich.de/SharedDocs/Termine/IAS/JSC/DE/Kurse/2021/ptc-hpc-python-2021.html?nn=717802

PyCologne

PyCologne: Python User Group Köln
Meets on the 2nd Wednesday each month at
Chaos-Computer-Club Cologne
URL: http://pycologne.de

Member of the Helmholtz Association Slide 168

http://pycologne.de

Enjoy

	Introduction
	Data Types I
	Control Statements
	Functions
	Input/Output
	Errors and Exceptions
	Data Types II
	Object Oriented Programming
	Modules and Packages
	Advanced Techniques
	Tools
	Regular Expressions (optional)
	Summary and Outlook

